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Abstract

An implementation is typically checked against a specification by proving
that the implementation implies the specification. This ensures that the im-
plementation only has behaviors allowed by the specification. However, this
does not require the implementation to have any behavior at all!

We propose that correctness statements have two parts, corresponding to
liveness and safety. Safety is that the implementation implies an “allowed-
behavior” specification, as now. Liveness is that a “required-behavior” speci-
fication implies the implementation.

1 Introduction

The current practise to formally check an implementation against a specification is
to set up and prove a correctness statement that the implementation implies the
specification:

Dz’mpl = Dspec

Informally, this states that any behavior of the implementation is allowed by the
specification, see for instance [1, 2, 4]. Implication is used since equality between
the implementation and the specification is too confining. Equality may require the
specification to have too many implementation details.

For example, consider an address decoder for a register file as in Fig. 1. One
of three addresses, 00, 01, or 10, comes from above on the address lines a0 and
al. The decoder selects one of three registers with r0, r1, and r2. The selected
register puts data onto or receives data from the data lines at the bottom. (The
register read/write controls and clock lines are not shown.) We want the decoder
to consistently activate some register select line in response to each address, but it
doesn’t matter to correct operation which one is selected. Since we want to allow the
layout designer the maximum flexibility, we will not specify the mapping between
addresses and registers.
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Figure 1: Address Decoder for a Register File

Here is a specification written in HOL98 [3]. The function being defined,
decode_spec, and its arguments are given first. Question mark (?) is “there exists”
(3), period (.) is “such that,” leaning slashes (/\) is “and,” and EL n selects the
nt* element of a list ([...]).

decode_spec a0 al r0 rl1 r2 =
?rarbrc . “(ra =1rb) /\ “(ra = rc) /\ “(b = rc) /\

(a0 /\ "al = EL ra [r0; r1; r2]) /\
(a0 /\ al = EL rb [r0; r1; r2]) /\
( a0 /\ "al = EL rc [r0; r1; r2])

Informally this says that each address is tied to one of three outputs. The corre-
spondence of addresses to outputs, determined by ra, rb, and rc, is not fixed, but
each address must correspond to a unique output.

Since one possible address is not allowed, we also define a constraint on valid
inputs to the decoder.

decode_constraint a0 al = “(a0 /\ al)
The traditional correctness statement is as follows.

decode_constraint a0 al /\ decode_impl a0 al r0 rl r2 ==>
decode_spec a0 al r0 rl1 r2

The problem is that this correctness statement doesn’t require the implemen-
tation to do anything. If the implementation is contradictory, that is, it evaluates
to false, the implication is true no matter what the specification requires. In other
words, a contradictory or inconsistent implementation model satisfies any specifi-
cation!

2 Proposed Correctness Statement

Can this problem occur in practise? Figure 2 shows one implementation of the
decoder. The formal description is simply a list of gates and connections. (Appro-
priate definitions of not_gate and and_gate are needed, but are not given here.)



decode_impl a0 al r0 rl1 r2 =
(? ca cb cc cd .
not_gate a0 ca /\ not_gate al cc /\
not_gate ca cb /\ not_gate cc cd /\
and_gate ca cc r0 /\
and_gate ca cd r1 /\
and_gate cb cc r2)

In this slightly contrived example, the address inputs, a0 and al, are initially
buffered resulting in negated signals, ca and cc. The negated signals are inverted
again to get true signals, cb and cd (cd not labeled in figure).
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Figure 2: An Implementation of the Address Decoder

Suppose an error were made in the formal model and the second line was written
like this.

not_gate ca cb /\ not_gate cc cc /\

The second “not” gate’s input and output are connected. If we use the traditional
correctness statement and after simplification, we must prove the following (many
parts are elided for clarity).

...N(cc="ec) N... = ...specification. ..

The left hand side of the implication should reduce to false, so the theorem may be
proved. Supposedly then the model does implement the specification, even though
there is an error in the model of the implementation.

We follow the lead of other areas of computer science and require two different
specifications: a “liveness” specification and a “safety” specification. The more
cautious correctness statement we propose is this.

Diiveness spec —> Dz’mpl A Dimpl = Dsafety spec

For the decoder example, we want any implementation to select one of the
outputs for each valid address. We can formalize the liveness specification as follows.

decode_spec_live a0 al r0 rl r2 =
decode_constraint a0 al ==> r0 \/ rl1 \/ r2



Here is the corresponding correctness statement. The predicate decode_spec_safety
is just decode_spec from earlier.

decode_spec_live a0 al r0 rl r2
==> decode_impl a0 al r0 rl r2
/\ decode_impl a0 al r0 ri1 r2
==> decode_spec_safety a0 al r0 rl1 r2

This correctness statement should prevent the incorrect implementation model from
causing a falsely confirming proof.

3 Does it Matter?

Several people commented that even this correctness statement is not absolutely
dependable. For example, the safety specification may be trivially true or the
liveness specification may be contradictory. In either case, the statements may be
verified even though there is an error. What can be done to strengthen the result?

To examine for a clause for falsity, one can try to prove the converse, for example,

~(decode_spec_live a0 al r0 ri1 r2)

Alternatively, finding even one set of arguments which satisfies the predicate (makes

it evaluate to true) means the predicate is not a contradiction. Validation can also

help support (or disprove) that the specification means what is intended.
Examining a clause for trivial truth is equivalent to trying to prove, for instance,

decode_spec_safety a0 al r0 rl1 r2

If this can be proved to be a theorem, it is clearly too weak: it specifies that any
behavior is safe. One can evaluate specific combinations of input which should be
unsafe, that is, for which the predicate should be false.

Contradictory implementations don’t seem to have been a problem. Why not?
We suggest some possible reasons.

e Most implementation models are structured so inadvertently writing a con-
tradiction is unlikely.

e An incorrect implementation (or specification) usually results in a failure to
prove, rarely a proof of an incorrectly formed statement.

e During proofs one notices that the proof was too easy, for instance, witnesses
for existentially quantified variables are never needed.

e Finally proofs are typically used after the models are tested or simulated, so
such gross errors are unlikely.

Proving the implementation does something via a liveness specification is akin to
proving termination for software semantics: it is not central to most checking, but
may uncover some errors. It seems prudent to consider the possibility of a false
positive result.



4

Conclusion

We propose that implementations must be shown to satisfy some liveness condi-
tions, that is, not be contradictions, in addition to implementing allowed behaviors.
Although it has not been found to be a problem, this two-part correctness statement
should add more assurance that when the goal is proved, the design is correct.
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